Skip to Main Content

NISH (NITAG Support Hub) 12: Whole-cell (wP) Hexavalent vaccine: Domain 1 : Disease Burden

This Library Guide is a collection of useful documents & evidence on the safety, efficacy, effectiveness and impact of the whole-cell (wP) Hexavalent vaccine to support NITAG members and other policy makers throughout Africa with making evidence-based r

Keywords used

Whole Cell (wP) Hexavalent vaccine and “disease burden” OR epidemiology OR incidence OR cases OR hospitalization OR case fatality OR  “clinical characteristics” OR “cost of health care” OR “alternative prevention”

Retrieved from Google Scholar

Abiodun, A., Andersen, H., Mamo, L. T., & Sisay, O. B. (2021). Vaccine manufacturing in Africa: What it takes and why it matters. Tony Blair Institute for Global Change, 1. https://www.afsic.net/wp-content/uploads/2021/05/Tony-Blair-Institute-Vaccine-Manufacturing-in-Africa-What-It-Takes-and-Why-It-Matters-FINAL.pdf

Abu-Raya, B., & Edwards, K. M. (2025). Prevention of fetal and early life infections through maternal-neonatal immunization. In Remington and Klein’s Infectious Diseases of the Fetus and Newborn Infant (pp. 1105-1120. e6). Elsevier. https://doi.org/10.1016/B978-0-323-79525-8.00050-0

Bentley, S. D., & Lo, S. W. (2021). Global genomic pathogen surveillance to inform vaccine strategies: A decade-long expedition in pneumococcal genomics. Genome Medicine, 13(1), 84. https://doi.org/10.1186/s13073-021-00901-2

Chaguza, C. (2018). Population genomics of pneumococcal strains from a high disease African setting. The University of Liverpool (United Kingdom).[Dissertation] Open here

Croucher, N. J., Løchen, A., & Bentley, S. D. (2018). Pneumococcal vaccines: Host interactions, population dynamics, and design principles. Annual Review of Microbiology, 72(1), 521–549. https://doi.org/10.1146/annurev-micro-090817-062338

Dakin, A., Borrow, R., & Arkwright, P. D. (2023). A review of the DTaP-IPV-HB-PRP-T Hexavalent vaccine in pediatric patients. Expert Review of Vaccines, 22(1), 104–117. https://doi.org/10.1080/14760584.2023.2161519

Deen, J., Lopez, A. L., Kanungo, S., Wang, X.-Y., Anh, D. D., Tapia, M., & Grais, R. F. (2018). Improving rotavirus vaccine coverage: Can newer-generation and locally produced vaccines help? Human Vaccines & Immunotherapeutics, 14(2), 495–499. https://doi.org/10.1080/21645515.2017.1403705

le Roux, D. (2022). Ambulatory and hospitalized childhood pneumonia: A longitudinal study in a peri-urban low-income community with high vaccination coverage in Sub-Saharan Africa.[Dissertation] http://hdl.handle.net/11427/36772

Lewnard, J. A., & Cowley, L. A. (n.d.). Full title: Serotype association with neonatal invasive potential, disease manifestation, and clinical outcome in group B Streptococcus: A Bayesian analysis. [Preprint] https://doi.org/10.1101/421412

Lewnard, J. A., & Cowley, L. A. (2016). Full: An empirical Bayes method for serotype case-carrier ratios, with an application to Group B. Lancet Infect Dis, 16(5), 546–555. [Preprint] https://doi.org/10.1101/421412

Lewnard, J. A., & Cowley, L. A. (2018). Serotype association with neonatal invasive potential, disease manifestation, and clinical outcome in group B Streptococcus: A Bayesian analysis. bioRxiv, 421412. [Preprint] oi: https://doi.org/10.1101/421412

Mbenenge, N., Subramoney, K., Adu-Gyamfi, C. G., & Treurnicht, F. K. (2023). Research Article Hepatitis B Virus Immunity Gap: A Six-Year Laboratory Data Review of Hepatitis B Serological Profiles in Gauteng Province, South Africa. https://doi.org/10.1155/2023/6374874

Moore, D. P., Andronikou, S., Argent, A. C., Avenant, T., Cohen, C., Green, R. J., Itzikowitz, G., Jeena, P., Masekela, R., & Nicol, M. P. (2020). Diagnosis and management of community-acquired pneumonia in children: South African Thoracic Society guidelines. African Journal of Thoracic and Critical Care Medicine, 26(3), 95–116. https://hdl.handle.net/10520/ejc-m_ajtccm_v26_i3_ajtccm_v26_n3_a7

Nnaji, C. (2024). Assessing and addressing missed opportunities for vaccination in Cape Town through a collaborative quality improvement approach. [Dissertation] http://hdl.handle.net/11427/40377

Nunes, M. C., Tamblyn, A., Jose, L., Ntsimane, M., Lerotholi, N., Machimana, C., Taylor, A., Laher, F., & Madhi, S. A. (2023). Immunogenicity of tetanus, diphtheria and acellular pertussis vaccination among pregnant women living with and without HIV. AIDS, 37(15), 2305–2310. https://journals.lww.com/aidsonline/fulltext/2023/12010/immunogenicity_of_tetanus,_diphtheria_and.5.aspx

Orlando, R., Foggia, M., Maraolo, A. E., Mascolo, S., Palmiero, G., Tambaro, O., & Tosone, G. (2015). Prevention of hepatitis B virus infection: From the past to the future. European Journal of Clinical Microbiology & Infectious Diseases, 34, 1059–1070. (NOT OA)

Pagliusi, S., Leite, L. C., Datla, M., Makhoana, M., Gao, Y., Suhardono, M., Jadhav, S., Harshavardhan, G. V., & Homma, A. (2013). Developing Countries Vaccine Manufacturers Network: Doing good by making high-quality vaccines affordable for all. Vaccine, 31, B176–B183. https://doi.org/10.1016/j.vaccine.2012.11.060

Paul, P., Gonçalves, B. P., Le Doare, K., & Lawn, J. E. (2023). 20 million pregnant women with group B streptococcus carriage: Consequences, challenges, and opportunities for prevention. Current Opinion in Pediatrics, 35(2), 223–230. Open here

Sadoh, A., Onuchukwu, C., Akintan, P., Fajolu, I., Medupin, P., Okafor, A., Olatunya, O., Bisi-Onyemaechi, A., Teru, P., & Yilgwan, C. (2024). Paediatric Association of Nigeria (PAN) Immunization Guidelines: An Update (2023). Nigerian Journal of Paediatrics, 51(1), 55–74. DOI: 10.4314/njp.v51i1.08

Slack, M. P. E. (2021). Long term impact of conjugate vaccines on Haemophilus influenzae meningitis: Narrative review. Microorganisms, 9(5), 886. https://doi.org/10.3390/microorganisms9050886

Slack, M. P. E., Cripps, A. W., Grimwood, K., Mackenzie, G. A., & Ulanova, M. (2021). Invasive Haemophilus influenzae infections after 3 decades of Hib protein conjugate vaccine use. Clinical Microbiology Reviews, 34(3), 10.1128/cmr. 00028-21. https://doi.org/10.1128/cmr.00028-21

Venkatesan, M. M., & Van de Verg, L. L. (2015). Combination vaccines against diarrheal diseases. Human Vaccines & Immunotherapeutics, 11(6), 1434–1448. https://doi.org/10.4161/21645515.2014.986984

Vetter, V., Gardner, R. C., Debrus, S., Benninghoff, B., & Pereira, P. (2022). Established and new rotavirus vaccines: A comprehensive review for healthcare professionals. Human Vaccines & Immunotherapeutics, 18(1), 1870395. https://doi.org/10.1080/21645515.2020.1870395

What is the difference between Whole-Cell Pertussis (wP) Hexavalent and Acellular Pertussis (aP) Hexavalent Vaccine?

1. Whole-Cell Pertussis (wP) Hexavalent Vaccine

  • Contains whole, inactivated Bordetella pertussis bacteria.

  • Example: DTwP-HepB-Hib-IPV (e.g., HEXASIIL®).

  • Known for strong, long-lasting immunity.

  • Associated with more side effects (e.g., fever, redness, swelling, irritability) due to a higher immune response.

  • Typically used in low- and middle-income countries (LMICs) due to its lower cost and better herd immunity.

2. Acellular Pertussis (aP) Hexavalent Vaccine

  • Contains purified pertussis antigens (instead of whole bacteria), such as pertussis toxin and filamentous hemagglutinin.

  • Example: DTaP-HepB-Hib-IPV (e.g., Infanrix Hexa®).

  • Causes fewer side effects but may lead to waning immunity, requiring booster doses.

  • Preferred in high-income countries where safety concerns outweigh herd immunity considerations.